姓 名: 胡鹰翔
职 称: 副教授(硕士生导师)
所属系别: 应用数学系
学科专业: 微分几何、几何分析
办公地点: 沙河校区主楼E-601-1
电子邮箱: huyingxiang@buaa.edu.cn
研究兴趣: 几何偏微分方程、超曲面曲率流及其几何应用
教育背景
浙江大学,best365网页版登录,博士,2017
浙江大学,best365网页版登录,学士,2010
工作简历
best365网页, best365网页版登录,副教授,2020.7--至今
清华大学,丘成桐数学科学中心,博士后,2017.10—2020.7
科研项目
科技部“数学和应用研究”重点研发专项青年项目,2021.12-2026.11,参与(项目骨干),在研
国家自然科学基金,青年科学基金项目,12101027, 超曲面上的几何不等式,2022.01-2024.12,主持,在研
中国博士后科学基金,2018M641317,几何不等式和曲率流,2018-2020,主持,已结题
代表作论著
1. (with Yong Wei, Bo Yang and Tailong Zhou) On the mean curvature type flow for convex capillary hypersurfaces in the ball,
Calc. Var. (2023), 62:209.
2. (with Haizhong Li) Blaschke-Santaló type inequalities and quermassintegral inequalities in space forms,
Adv. Math., 413 (2023), 108826.
3. (with Haizhong Li) Geometric inequalities for static convex domains in hyperbolic space,
Trans. Amer. Math. Soc., 376 (2022), no.8, 5587--5615.
4. (with Yimin Chen and Haizhong Li) Geometric inequalities for free boundary hypersurfaces in a ball,
Ann. Global. Anal. Geom., 62 (2022), no. 1, 33--45.
5. (with Haizhong Li and Yong Wei) Locally constrained curvature flows and geometric inequalities in hyperbolic space,
Math. Ann., 382 (2022), 1425--1474.
6. (with Ben Andrews and Haizhong Li) Harmonic mean curvature flow and geometric inequalities,
Adv. Math., 375 (2020), 107393.
7. (with Haizhong Li, Yong Wei and Tailong Zhou) Contraction of surfaces in hyperbolic space and in sphere,
Calc. Var., 2020, 59:172.
8. (with Shicheng Xu) 1st Eigenvalue pinching for convex hypersurfaces in a Riemannian manifold,
Proc. Amer. Math. Soc., 148 (2020), 2609--2615.
9. (with Haizhong Li) Geometric inequalities for hypersurfaces with nonnegative sectional curvature in hyperbolic space,
Calc. Var., 2019, 58:55.
10. Willmore inequality on hypersurfaces in hyperbolic space,
Proc. Amer. Math. Soc., 146 (2018), no. 6, 2679--2688.
11.(with Hongwei Xu) An eigenvalue pinching theorem for compact hypersurfaces in a sphere,
J. Geom. Anal., 27 (2017), no. 3, 2472--2489.
12. (with Hongwei Xu, Entao Zhao) First eigenvalue pinching for Euclidean hypersurfaces via kth mean curvatures,
Ann. Glob. Anal. Geom.,48 (2015), no. 1,23--35.
教学活动
2021年,数学分析习题课(16学时)、解析几何(64学时)
2022年,解析几何(32学时)、微分流形(48学时)、三/四年级研讨课(16学时);
2023年,微分几何(48学时)
推荐链接
MathSciNet网站:https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1110051
版权所有©2024 best365·官网(中国)登录入口
地址:北京市昌平区高教园南三街9号 网站:www.loveqinpai.com