请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及分析与偏微分方程讨论班(2023秋季第21讲)】Multiple-end solutions of the Allen-Cahn equation on the plane

发布日期:2023-11-23    点击:

best365网页版登录学术报告

--- 分析与偏微分方程讨论班(2023秋季第21)


Multiple-end solutions of the Allen-Cahn equation on the plane

(中国科学技术大学)

时间1127(周10:00-11:00


地点:#腾讯会议:281-592-917

点击链接直接加入会议:https://meeting.tencent.com/dm/WkBkXnjJI0TM


摘要: Allen-Cahn equation is a classical model arising from phase transition and closely related to the minimal surface theory. In dimension two, an important class of solutions to this equation is the so called multiple-end solutions. They have finite Morse index. While there already exist some results on the construction of these solutions near the boundary of the whole moduli space of multiple-end solutions, a general variational construction is still missing. In this talk we prove that there exists a family of 6-end solutions with prescribed slopes using minimax arguments. This is joint work with Jun Wang and Wen Yang.


报告人简介: 刘勇,中国科学技术大学教授,研究非线性分析和椭圆方程领域相关问题。近年来,主要研究Allen-Cahn、Ginzburg-LandauKadomtsev-

Petviashvili、Gross-Pitaevskii等方程解的存在性和分类等。在ARMA等杂志上发表文章多篇。


邀请人:戴蔚

欢迎大家参加!


快速链接

版权所有©2024 best365·官网(中国)登录入口
地址:北京市昌平区高教园南三街9号   网站:www.loveqinpai.com

Baidu
sogou