请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【微分几何讨论班(第13讲)】Geometry of Maurer-Cartan Elements on Complex Manifolds

发布日期:2020-12-08    点击:

北航微分几何讨论班(第13讲)


题目:Geometry of Maurer-Cartan Elements on Complex Manifolds


报告人:陈酌(清华大学)


报告时间:2020年12月10日10:30-11:30


地点:沙河校区E-405


题目:Geometry of Maurer-Cartan Elements on Complex Manifolds


摘要:The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie algebroid theory. In particular, we extend Lichnerowicz-Poisson cohomology and Koszul-Brylinski homology to the realm of extended Poisson manifolds; we establish a sufficient criterion for these to be finite dimensional; we describe how homology and cohomology are related through the Evens-Lu-Weinstein duality module; and we describe a duality on Koszul-Brylinski homology, which generalizes the Serre duality of Dolbeault cohomology. This is a joint work with Mathieu Stienon and Ping Xu.


报告人简介:陈酌,2004年在北京大学获博士学位,现任清华大学数学科学系副教授,研究领域属于经典微分几何与数学物理的交叉与结合。近年来在非线性李理论,特别是Atiyah示性类, Poisson群胚,李双代数胚和Courant代数胚的课题研究中,取得了一系列重要学术成果,发表在J. Differential Geometry, Comm. Math. Phys.等权威期刊上。


邀请人:沈良明

快速链接

版权所有©2024 best365·官网(中国)登录入口
地址:北京市昌平区高教园南三街9号   网站:www.loveqinpai.com

Baidu
sogou