请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术会议】北航微分几何学术研讨会

发布日期:2021-10-21    点击:

北航“微分几何学术研讨会”

--微分几何讨论班(第5-7期)


我们将于20211026日沙河校区主楼E402改为线上)举办“微分几何学术研讨会”。

1. 斌(北京大学)9:00-9:50

2. 张永胜(同济大学)10:00-10:50

3. 熊金钢(北师大) 11:00-11:50


腾讯会议:914 775 991


1. 题目: The Green's function for equations with conic metrics

摘要:In this talk, we study the existence, uniqueness and properties of the Green function for the conic elliptic equation. We also prove the Poisson integral formula. As an application, we give a new proof of the regularity for conic Monge-Amp\`{e}re equations.

报告人简介:周斌现为北京大学教授、博士生导师,国家优青。主要研究方向为微分几何,在国际著名数学期刊Adv.Math., JFA., Peking Math. J.等杂志上发表论文20篇。

2. 题目: Instability of Type (II) Lawson-Osserman Cones

摘要:We prove instability of Type (II) Lawson-Osserman cones in Euclidean spaces, and thus provide a family of (uncountably many) non-smooth unstable minimal graphs of high codimension versus smooth unstable ones by Lawson-Osserman using a min-max technique. To our knowledge, these are the first such examples of non-smooth unstable non-parametric minimal graphs in the Euclidean setting. This talk is based on a joint work with Prof. Zhaohu Nie.

报告人简介:张永胜现为同济大学研究员、博士生导师,国家优青。主要研究方向为微分几何,在国际著名数学期刊JDGAdv.Math., JMPA等杂志上发表论文10篇。

3. 题目: Non-smoothness of viscosity solutions of k-Loewner–Nirenbeg problem in domains with nontrivial topology

摘要:I will talk about a recent joint work with Y.Y. Li and L. Nguyen, in which we prove that viscosity solutions of the k-Loewner–Nirenberg problem in n-dimensional

Euclidean domains whose boundary contains more than one connected components are not C^2 when $2 \le k \le n$.

报告人简介:熊金钢现为北京师范大学教授、博士生导师,国家优青。主要研究方向为偏微分方程、几何分析和非线性分析,在国际著名数学期刊JEMS, AJM, Crelle, Math.Ann., Adv. Math. Peking Math. J.等杂志上发表论文30多篇。



会议组织者:张世金(shijinzhang@buaa.edu.cn)

北航best365网页版登录



快速链接

版权所有©2024 best365·官网(中国)登录入口
地址:北京市昌平区高教园南三街9号   网站:www.loveqinpai.com

Baidu
sogou