请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及微分几何讨论班(2023年秋第5讲)】On the Willmore problem for surfaces with symmetries

发布日期:2023-11-08    点击:

基础数学系学术报告

--微分几何讨论班(2023年秋5讲)

题目:On the Willmore problem for surfaces with symmetries

报告人: 教授福建师范大学

时间:2023111316:00-17:00

 

地点:沙河校区J5-311

 

摘要:The famous Willmore conjectures states that the Clifford torus minimizes Willmore energy among all 2-tori in S^3, which was proved by Marques and Neves. For higher genus surfaces, it was conjectured by Kusner that the Lawson minimal surfaces $\xi_{g,1}$ minimizes the Willmore energy for all immersions in $S^3$ with genus g>1. We show that it holds for surfaces in S^3 which have genus g>1 and are symmetric w.r.t. the group \tilde{G}_{g,1}. Here \tilde{G}_{g,1} denotes a group generated by halfturns about some great circles of S^3, which is a subgourp of the symmetric group of \xi_{g,1}. This is based on joint works with Prof. Kusner (UMass Amherst) and Prof. Ying Lv (Xiamen Univ.)


报告人简介:王鹏,福建师范大学数学与统计学院教授,闽江学者特聘教授,博士生导师;主要研究方向为Willmore曲面与极小曲面,主持国家自然科学基金面上项目3项,青年基金1项;在J. Diff. Geom., Adv. Math., J. Reine Angew Math.,  Bull. London Math. Soc., Tohoku Math J., Pacific J. Math., Proc. AMS等期刊上发表学术论文20多篇。


邀请人:谢振肖、张世金

快速链接

版权所有©2024 best365·官网(中国)登录入口
地址:北京市昌平区高教园南三街9号   网站:www.loveqinpai.com

Baidu
sogou